Home    About    Current    Archives    Announcements     Guidelines     Contact Us     Search
Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Field tests of dielectric sensors in a facility for studying salt tolerance of crops
Gerrit van Straten1*, Arjen de Vos2, Rik Vlaming2, Roland Oosterbaan3
1. Systems and Control; Wageningen University; 6708 WG Wageningen, The Netherlands;
2. Salt Farm Texel; 1791 NT Den Burg, The Netherlands; 3. 6721 XB Bennekom, The Netherlands
 Download: PDF (0 KB)   HTML (1 KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Seven salinity levels ranging from 1.7 to 35 dS/m are applied to groups of eight fields each in a field facility for testing the salt tolerance of crops. Each of the 56 test fields is equipped with one or two dielectric sensors for soil volumetric water content (VWC) and bulk electric conductivity (ECb). Several models for calibrating the sensors in the laboratory were tested and parameterized. Overall, the root mean square error was in the range of 0.57-0.59 dS/m in terms of soil bulk EC. The models differed in their robustness against inversion to obtain pore water EC from measured bulk EC. The laboratory calibration formula overestimates the pore water EC at low EC (5 dS/m), and underestimates it at high EC (25 dS/m). In practice, calculated sensor pore water EC?s in fields with the same salinity treatment differ among each other, showing the limitations of laboratory calibrations. However, in fields where pore water samples are available, a direct proportionality between pore water EC and sensor bulk EC suffices without correction for VWC in this well irrigated case. Moreover there is a good correlation between the low frequent EC time series of suction cup samples and the high frequent sensor readings. When used with care, sensors can give valuable information about the dynamics of soil conditions during crop salinity tolerance tests.
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Gerrit van Straten1*
Arjen de Vos2
Rik Vlaming2
Roland Oosterbaan3
Key wordssalt tolerance   electrical conductivity   volumetric water content   soil sensor   calibration   salinity   irrigation     
Received: 2014-10-21; Published: 2016-01-13
Corresponding Authors: Prof. G. van Straten, Emeritus Professor of Systems and Control, Department Bio-refinery and Process Dynamics, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands. Email: gerrit.vanstraten@wur.nl.   
Cite this article:   
Gerrit van Straten1*,Arjen de Vos2,Rik Vlaming2 et al. Field tests of dielectric sensors in a facility for studying salt tolerance of crops[J]. IAEJ, 2016, 25(2): 102-113.
URL:     or
[1] Archie, G.E. 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions American Institute of Mechanical Engineers, 146(1): 54-62.
[2] Bittelli, M., F. Salvatorelli, and P.R. Pisa. 2008. Correction of TDR-based soil water content measurements in conductive soils. Geoderma, 143(1-2): 133-142.
[3] Borrelli, G.,D. Ficco, L. Giuzio,M. Pompa, L. Cattivelli, and Z. Flagella. 2011. Durum wheat salt tolerance in relation to physiological, yield and quality characters. Cereal Research Communications, 39(4): 525-534.
[4] Brovelli, A. and G. Cassiani. 2011. Combined estimation of effective electrical conductivity and permittivity for soil monitoring. Water Resources Research, 47(8): W08510.
[5] Hilhorst, M.A. 2000. A pore water conductivity sensor. Soil Science Society of America Journal, 64(6): 1922-1925.
[6] Katerji, N.,J.W. van Hoorn, A. Hamdy, and M. Mastrorilli. 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management, 62(1): 37-66.
[7] Ma, W., Q. Cheng,L. Li,and Z. Yu. 2010. Effect of slight saline water irrigation on soil salinity and yield of crop. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 26(1): 73-80.
[8] Maggio, A., S. de Pascale, M. Fagnano, andG. Barbieri. 2011. Saline agriculture in mediterranean environments. Italian Journal of Agronomy, 6(1): 36-43.
[9] Mortl, A., R. Muñoz-Carpena, D. Kaplan, and Y. Li. 2011. Calibration of a combined dielectric probe for soil moisture and porewater salinity measurement in organic and mineral coastal wetland soils. Geoderma, 161(1-2):50-62.
[10] Rhoades, J.D., P. J. Shouse, W. J. Alves, N. A. Manteghi, and S. M. Lesch. 1990. Determining soil salinity from soil electrical conductivity using different models. Soil Science Society of America Journal, 54(1):46-54.
[11] Rosenbaum, U., J.A. Huisman, A. Weuthen, H. Vereecken, and H.R.Bogena. 2010. Sensor-to-sensor variability of the ECH2o EC-5, TE, and 5TE sensors in dielectric liquids. Vadose Zone Journal, 9(1): 181-186.
[12] Rosenbaum, U., J.A. Huisman, J. Vrba, H. Vereecken, and H.R. Bogena. 2011. Correction of temperature and electrical conductivity effects on dielectric permittivity measurements with ECH 2O sensors. Vadose Zone Journal, 10(2): 582-593.
[13] Scudiero, E., A. Berti, P. Teatini, and F. Morari. 2012. Simultaneous monitoring of soil water content and salinity with a low-cost capacitance-resistance probe. Sensors (Switzerland), 12(12): 17588-17607.
[14] Shannon, M.C. and C.M. Grieve. 1999. Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78(1-4): 5-38.
[15] Topp, G. C., J. L. Davis, and A. P. Annan. 1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resources Research, 16(3): 574-582.
[16] Visconti, F., D. Martínez, M.J. Molina, F. Ingelmo, J. Miguel De Paz. 2014. A combined equation to estimate the soil pore-water electrical conductivity: Calibration with the WET and 5TE sensors. Soil Research, 52(5): 419-430.
[17] Vogeler, I,, B.E. Clothier, S.R. Green, D.R. Scotter and R.W. Tillman. 1996. Characterizing water and solute movement by time domain reflectometry and disk permeametry. Soil Science Society of America Journal., 60(1):5-12.
[18] Wang, S., G. Huang, J. Yang, J. Wang, R. Tai, and L. Meng. 2010. Effect of irrigation with saline water on water-salt dynamic and spring wheat yield. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 26(5): 27-33.
[19] Wu, Z. and Q. Wang. 2010. Effect of saline water continuous irrigation on winter wheat yield and soil physicochemical property. Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 41(9): 36-43.
[20] Zhang, H.,J. Cui, T. Cao, J. Zhang, Q. Liu, and H. Liu. 2011. Response to salt stresses and assessment of salt tolerability of soybean varieties in emergence and seedling stages. Shengtai Xuebao/ Acta Ecologica Sinica, 31(10): 2805-2812.
[1] Amadou Keita1*, Hamma Yacouba1, Laszlo G. Hayde2, Bart Schultz2. 2016, 25(2): 30-43.[LINK]
[2] M. Todorovic1,*, E. E. Riezzo2, V. Buono1, M. Zippitelli2, A. Galiano3, V. Cantore4. 2016, 25(2): 44-56.[LINK]
[3] Yongchong Li1, Haijun Yan1*, Maona Li1, Chengbo Xu2, Zhiqiang Wang3. 2016, 25(1): 121-132.[LINK]
[4] Hongtao Zou, Jia Lu, Hui Zhang, Yaosheng Wang, Yulong Zhang*. 2015, 24(3): 26-.[LINK]
[5] Ma Zhun 1, Lei Ting 2, Ji Xiaosheng 3.4*, Li Shu 5, Efrem Curcio4. 2015, 24(3): 1-.[LINK]
[6] T. Parthasarathi1*, S. Mohandass1, S. Senthilvel1, Eli Vered2. 2013, 22(4): 49-62.[LINK]
[7] N. K. Rajeshkumar*, K. Raghavendra, J. M. Veeresh, M. Chowdareddy, . 2013, 22(3): 15-25.[LINK]
[8] Xiangwei Chen1*, Yang Zhang2, Wenting Han3,4, Su Ki Ooi5, Xuan Wang6. 2013, 22(3): 31-38.[LINK]
[9] Wenting Han1,2,3, Yuxiang Huang1,3*, Chao Zhang1,3, Su Ki Ooi4, . 2013, 22(2): 8-17.[LINK]
Copyright © 2012 Editorial by International Agricultural Engineering Journal